Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.

Identifieur interne : 002C04 ( Main/Exploration ); précédent : 002C03; suivant : 002C05

Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.

Auteurs : Francesca Secchi [États-Unis] ; Maciej A. Zwieniecki

Source :

RBID : pubmed:22837359

Descripteurs français

English descriptors

Abstract

It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process.

DOI: 10.1104/pp.112.200824
PubMed: 22837359
PubMed Central: PMC3461568


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.</title>
<author>
<name sortKey="Secchi, Francesca" sort="Secchi, Francesca" uniqKey="Secchi F" first="Francesca" last="Secchi">Francesca Secchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA. fsecchi@oeb.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Arnold Arboretum of Harvard University, Boston, Massachusetts 02131</wicri:regionArea>
<wicri:noRegion>Massachusetts 02131</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zwieniecki, Maciej A" sort="Zwieniecki, Maciej A" uniqKey="Zwieniecki M" first="Maciej A" last="Zwieniecki">Maciej A. Zwieniecki</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22837359</idno>
<idno type="pmid">22837359</idno>
<idno type="doi">10.1104/pp.112.200824</idno>
<idno type="pmc">PMC3461568</idno>
<idno type="wicri:Area/Main/Corpus">002951</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002951</idno>
<idno type="wicri:Area/Main/Curation">002951</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002951</idno>
<idno type="wicri:Area/Main/Exploration">002951</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.</title>
<author>
<name sortKey="Secchi, Francesca" sort="Secchi, Francesca" uniqKey="Secchi F" first="Francesca" last="Secchi">Francesca Secchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA. fsecchi@oeb.harvard.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Arnold Arboretum of Harvard University, Boston, Massachusetts 02131</wicri:regionArea>
<wicri:noRegion>Massachusetts 02131</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zwieniecki, Maciej A" sort="Zwieniecki, Maciej A" uniqKey="Zwieniecki M" first="Maciej A" last="Zwieniecki">Maciej A. Zwieniecki</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Dehydration (MeSH)</term>
<term>Electrophysiological Phenomena (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Osmosis (MeSH)</term>
<term>Plant Exudates (chemistry)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stems (chemistry)</term>
<term>Plant Stems (physiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (physiology)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Water (chemistry)</term>
<term>Xylem (chemistry)</term>
<term>Xylem (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Déshydratation (MeSH)</term>
<term>Eau (composition chimique)</term>
<term>Exsudats végétaux (composition chimique)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Osmose (MeSH)</term>
<term>Phénomènes électrophysiologiques (MeSH)</term>
<term>Populus (composition chimique)</term>
<term>Populus (physiologie)</term>
<term>Stress physiologique (MeSH)</term>
<term>Tiges de plante (composition chimique)</term>
<term>Tiges de plante (physiologie)</term>
<term>Transport biologique (MeSH)</term>
<term>Xylème (composition chimique)</term>
<term>Xylème (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Exudates</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Eau</term>
<term>Exsudats végétaux</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Tiges de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Tiges de plante</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Dehydration</term>
<term>Electrophysiological Phenomena</term>
<term>Hydrogen-Ion Concentration</term>
<term>Osmosis</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Concentration en ions d'hydrogène</term>
<term>Déshydratation</term>
<term>Osmose</term>
<term>Phénomènes électrophysiologiques</term>
<term>Stress physiologique</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22837359</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>03</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>160</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2012</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.</ArticleTitle>
<Pagination>
<MedlinePgn>955-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.112.200824</ELocationID>
<Abstract>
<AbstractText>It is assumed that the refilling of drought-induced embolism requires the creation of an osmotic gradient between xylem parenchyma cells and vessel lumens to generate the water efflux needed to fill the void. To assess the mechanism of embolism repair, it is crucial to determine if plants can up-regulate the efflux of osmotically active substances into embolized vessels and identify the major components of the released osmoticum. Here, we introduce a new approach of sap collection designed to separate water from nonembolized (functional) and embolized (nonfunctional) vessels. This new approach made possible the chemical analysis of liquid collected from both types of vessels in plants subjected to different levels of water stress. The technique also allowed us to determine the water volumes in nonfunctional vessels as a function of stress level. Overall, with the increase of water stress in plants, the osmotic potential of liquid collected from nonfunctional vessels increased while its volume decreased. These results revealed the presence of both sugars and ions in nonfunctional vessels at elevated levels in comparison with liquid collected from functional vessels, in which only traces of sugars were found. The increased sugar concentration was accompanied by decreased xylem sap pH. These results provide new insight into the biology of refilling, underlining the role of sugar and sugar transporters, and imply that a large degree of hydraulic compartmentalization must exist in the xylem during the refilling process.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Secchi</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Arnold Arboretum of Harvard University, Boston, Massachusetts 02131, USA. fsecchi@oeb.harvard.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zwieniecki</LastName>
<ForeName>Maciej A</ForeName>
<Initials>MA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D053147">Plant Exudates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055724" MajorTopicYN="N">Electrophysiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009995" MajorTopicYN="N">Osmosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053147" MajorTopicYN="N">Plant Exudates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>3</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22837359</ArticleId>
<ArticleId IdType="pii">pp.112.200824</ArticleId>
<ArticleId IdType="doi">10.1104/pp.112.200824</ArticleId>
<ArticleId IdType="pmc">PMC3461568</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1999 May;120(1):7-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 May;120(1):11-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):27-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Feb;53(367):251-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11807129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(371):1155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2003 Mar;91(4):419-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1775-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):630-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jul;24(7):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Aug;24(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15172841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21437-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2005 Dec;30(5):761-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Feb;83(2):414-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 May 25;581(12):2309-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17434165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biologicals. 2008 Mar;36(2):134-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18042399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Mar;101(4):595-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):658-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18266903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(3):642-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18700860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jan;32(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19076529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Oct;14(10):530-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(15):4363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1677-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Aug 1;33(8):1285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20302602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20841451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Apr;180(4):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):395-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):377-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Oct;143(2):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Dec;92(12):1970-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1419-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21951466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1383-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Jan;126(2):182-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547616</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Zwieniecki, Maciej A" sort="Zwieniecki, Maciej A" uniqKey="Zwieniecki M" first="Maciej A" last="Zwieniecki">Maciej A. Zwieniecki</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Secchi, Francesca" sort="Secchi, Francesca" uniqKey="Secchi F" first="Francesca" last="Secchi">Francesca Secchi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C04 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C04 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22837359
   |texte=   Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22837359" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020